R code : Creating lagged Xs and y for supervised learning

This post shows a simple R code to create various lagged time series and concatenate them with the original time series. This can be used frequently when preprocessing time series data for machine/deep learning models.

R code : Creating lagged Xs and y for supervised learning
A humpback whale

Creating lagged Xs and y



Time series and its various lagged one are used as input variables for supervised machine or deep learning models. The following R code generates this concatenation of a set of lagged and time-t variables of the time series.

As an output format, Xs (lagged variables) are followed by y since it is relatively easy to access X by using "1:nk" rather than "2:(nk+1)".

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
#========================================================#
# Quantitative Financial Econometrics & Derivatives 
# ML/DL using R, Python, Tensorflow by Sang-Heon Lee 
#
# https://shleeai.blogspot.com
#--------------------------------------------------------#
# Create lagged Xs and y for supervised learning
#========================================================#
 
graphics.off(); rm(list = ls())
 
#===============================================
# function for creating lagged Xs and y
#===============================================
 
func_lagged_Xs_y <- function(y, k, nmx = "x"){
 
    nk <- length(k); ny <- length(y)
    df <- as.data.frame(matrix(nrow=ny, ncol=nk))
    colnames(df) <- paste0(nmx,k); df$y = y
    
    for(i in 1:nk) 
        df[(1+k[i]):ny,i] <- y[1:(ny-k[i])]
    
    return(df[(max(k)+1):ny,])
}
 
#-----------------------
# sample data
#-----------------------
<- c(31.1227.9530.6727.1821.8919.9021.58
       18.6920.3121.8919.2920.5721.5722.87
       21.0118.6317.9617.6817.5416.9517.33)
 
#-----------------------
# test cases
#-----------------------
Xy1 = func_lagged_Xs_y(y, k=1:10)
Xy1
 
Xy2 = func_lagged_Xs_y(y, k=c(1,3,5), nmx = "XX")
Xy2
 
cs


As expected, the results of two examples in the above R code are as follows.

lagged Xs and y for supervised learning



No comments:

Post a Comment