Python : Plotting Architecture of Tensorflow Keras model

This post shows how to plot an architecture flow of Tensorflow Keras model by using plot_model() function.



Plotting an architecture of Tensorflow Keras model by plot_model()



To plot the architecture flow of Tensorflow Keras model by using plot_model() function, two packages should be installed: graphviz and pydot.

To install these packages, type the following commands in the anaconda prompt.

1
2
pip install graphviz
pip install pydot
cs


In the Jupyter notebook, we can use plot_model() function to draw an architecture of the following Keras model.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
from keras import layers, models
from keras.utils.vis_utils import plot_model
 
#1. Modeling
model = models.Sequential()
 
model.add(layers.Dense(128, activation='relu'
                       input_shape=(256,),       name='HiddenLayer01'))
model.add(layers.Dense(64 , activation='relu',   name='HiddenLayer02'))
model.add(layers.Dense(32 , activation='relu',   name='HiddenLayer03'))
model.add(layers.Dense(1  , activation='softmax',name='OuputLayer'))
 
model.compile(loss='categorical_crossentropy'
              optimizer = 'adam', metrics=['accuracy'])
 
#2. Visualizing
plot_model(model, show_shapes=True, to_file='model.png')
 
cs


As expected, we can get the following visualization.

Plotting Architecture of Tensorflow Keras model by plot_model()

If you happen to encounter an error regarding the installation, one of possible solution is to use the following conda command in the anaconda prompt.

1
conda install graphviz
cs



No comments:

Post a Comment