Equivalence of VAR models between original variables and their linear transformations

This post demonstrates the VAR forecasting equivalence between original variables and their linear transformations by examining a simple example.



Equivalance of VAR forecastings



Let \(y_t\) represent a vector of time series, and let \(x_t\) be a vector formed by linear combinations of \(y_t\), such that \(x_t = M y_t\).


1) VAR model of \(y_t\)


1-1) VAR Estimation of \(y_t\)
\[\begin{align} y_t = A + B y_{t-1} + \epsilon_t \end{align}\] 1-2) Forecast \(y_t\) \[\begin{align} y_{t+h} = \hat{A} + \hat{B} y_{t+h-1} \end{align}\] 1-3) Recover \(x_t\) forecasts \[\begin{align} x_{t+h}^{rec} = M y_{t+h} \\ \end{align}\]

2) VAR model for \(x_t (=M \times y_t)\)


2-1) VAR Estimation of \(x_t\) \[\begin{align} x_t = C + D x_{t-1} + \eta_{t} \end{align}\] 2-1) Forecast \(x_t\) directly \[\begin{align} x_{t+h} = \hat{C} + \hat{D} x_{t+h-1} \end{align}\]

3) \(x_{t+h}\) and \(x^{rec}_{t+h} \) are the same

\[\begin{align} x^{rec}_{t+h} &= M y_{t+h} \\ \rightarrow x^{rec}_{t+h} &= M\hat{A} + M\hat{B} M^{-1} x^{rec}_{t+h-1} \\ \rightarrow x^{rec}_{t+h}&= \hat{C} + \hat{D} x^{rec}_{t+h-1} \\ \because x^{rec}_{t+h} &= x_{t+h} \\ \rightarrow x_{t+h} &= \hat{C} + \hat{D} x_{t+h-1} \end{align}\]

R code


The following simple example demonstrate the equivalance between \(x_{t+h}\) and \(x^{rec}_{t+h} \).

graphics.off(); rm(list = ls())
 
library(tsDyn)
 
# data1 
data1 <- matrix(rnorm(100*5, mean=0, sd=2), 1005)
 
# data2 is linear combinations of data1
data2 <- matrix(NA, 1005)
data2[,1<- data1[,1+ 0.5*data1[,2]
data2[,2<- 1.5*data1[,1+ data1[,3+ data1[,4- 2*data1[,5]
data2[,3<- 2*data1[,4+ 3*data1[,3]
data2[,4<- data1[,4- 2*data1[,3+ data1[,5]
data2[,5<- data1[,5- data1[,1]
 
 
# VAR estimation and forecasting using data1
var_mod <- lineVar(data1, lag=1)
fcst1   <- predict(var_mod, n.ahead = 36)
 
# fcst2 is recover from fcst1 like data2
fcst2_rec <- matrix(NA, 365)
fcst2_rec[,1<- fcst1[,1+ 0.5*fcst1[,2]
fcst2_rec[,2<- 1.5*fcst1[,1+ fcst1[,3+ fcst1[,4- 2*fcst1[,5]
fcst2_rec[,3<- 2*fcst1[,4+ 3*fcst1[,3]
fcst2_rec[,4<- fcst1[,4- 2*fcst1[,3+ fcst1[,5]
fcst2_rec[,5<- fcst1[,5- fcst1[,1]
 
 
# VAR estimation and forecasting using data2
var_mod      <- lineVar(data2, lag=1)
fcst2_dir <- predict(var_mod, n.ahead = 36)
 
# compare fcst2_rec and fcst2_dir
sum(fcst2_rec)
sum(fcst2_dir)
 
# differces are nearly zero
fcst2_rec - fcst2_dir
 
cs


> # differces are nearly zero
> round(fcst2_rec - fcst2_dir,8)
    Var1 Var2 Var3 Var4 Var5
101    0    0    0    0    0
102    0    0    0    0    0
103    0    0    0    0    0
104    0    0    0    0    0
105    0    0    0    0    0
106    0    0    0    0    0
107    0    0    0    0    0
108    0    0    0    0    0
109    0    0    0    0    0
110    0    0    0    0    0
111    0    0    0    0    0
112    0    0    0    0    0
113    0    0    0    0    0
114    0    0    0    0    0
115    0    0    0    0    0
116    0    0    0    0    0
117    0    0    0    0    0
118    0    0    0    0    0
119    0    0    0    0    0
120    0    0    0    0    0
121    0    0    0    0    0
122    0    0    0    0    0
123    0    0    0    0    0
124    0    0    0    0    0
125    0    0    0    0    0
126    0    0    0    0    0
127    0    0    0    0    0
128    0    0    0    0    0
129    0    0    0    0    0
130    0    0    0    0    0
131    0    0    0    0    0
132    0    0    0    0    0
133    0    0    0    0    0
134    0    0    0    0    0
135    0    0    0    0    0
136    0    0    0    0    0
cs


The content presented in this post may seem straightforward, and you are probably already acquainted with it.

Nevertheless, it has been substantiated through practical examination. This is because it is sometimes crucial to verify what we assume to be common knowledge (Look before you leap).

In particular, the subjects addressed here are useful in the context of segmented term structure models. Such models typically involve too many latent factors. However, by applying cross-sectional restrictions, it becomes possible to reduce to a small set of factors. In this case, leveraging these features facilitates more straightforward estimation and prediction processes.



No comments:

Post a Comment