lambda.min, lambda.1se and Cross Validation in Lasso : Binomial Response

This post explains more details regarding cross validation of Lasso in the case of a binomial response. We implement a R code for a lasso model's cross validation. In addition, We calculate lambda.min and lambda.1se manually. Finally we compare these two cross validation results with that of cv.glmnet().



Cross Validation in Lasso : Binomial Response



Cross validation for lasso is provided by glmnet R package and we can use it easily. Nevertheless, is there any reason why we implement cross validation procedure manually?. In a cross-sectional context, we just use cv.glmnet() function in glmnet R package without hesitation.

But when we deal with time-series data, it is often necessary to implement the process of cross validation (forward chaining) manually due to the lack of similar built-in functions. Therefore, if we replicate results of cv.glmnet(), we can modify this results for use in another purposes such as time series data analysis, especially variable selection using lasso.

Main output of this post is the next figure. The left part is a plot for cross-validation of cv.glmnet() and the right part is the corresponding result of our calculation by hand. With this graphical output, we also calculate the above mentioned two \(\lambda\)s in the binomial context.

lambda.1se and lambda.min, Cross Validation in Lasso : Binomial Response


Cross Validation of Lasso by cv.glmnet()


K-fold cross validation (cv) generates train/test(or validation) splits across multiple folds, we can perform multiple training and testing sessions, with different splits. Now that we are familiar with k-fold cross validation, we do not repeat it redundantly in this post. Using cv.glmnet(), we can write the following R code to perform a cross validation in the lasso estimation, which is focused on a variable selection.


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#========================================================#
# Quantitative ALM, Financial Econometrics & Derivatives 
# ML/DL using R, Python, Tensorflow by Sang-Heon Lee 
#
# https://shleeai.blogspot.com
#--------------------------------------------------------#
# Cross Validation of Lasso : Binomial Response
#========================================================#
 
library(glmnet) 
library(caret)  # confusion matrix
 
graphics.off()  # clear all graphs
rm(list = ls()) # remove all files from your workspace
 
set.seed(1234)
 
#============================================
# data : x and y
#============================================
data(BinomialExample) # built-in data
 
nfolds = 5 # number of folds
 
#============================================
# cross validation by using cv.glmnet
#============================================
cvfit <- cv.glmnet(
    x, y, family = "binomial"
    type.measure = "class" ,
    nfolds = nfolds,
    keep = TRUE  # returns foldid 
)
 
# two lambda from cv.glmnet
cvfit$lambda.min; cvfit$lambda.1se
 
x11(); plot(cvfit)
 
cs


In the above R code, we use a built-in binomial class example data (BinomialExample) for simplicity. In particular, when we set argument foldid, we can fix the grouping of folds manually. Without this argument, cv.glmnet() determines it automatically. Argument keep = TRUE makes information of grouping (foldid) available.

For a replication purpose, we reuse two vectors from a baseline lasso model

1) the range of lambda for assigning candidate \(\lambda\)s
2) the vector of fundid for identifying n-th fold


Of course, these two vectors can be user-defined.

Running the above R code results in the following two \(\lambda\)s and figure.

1
2
3
cvfit$lambda.min = 0.02578548
cvfit$lambda.1se = 0.02829953

lambda.1se and lambda.min, Cross Validation in Lasso : Binomial Response


Calculation of lambda.min and lambda.1se


lambda.min and lambda.1se are known as recommendations of selection criteria.

Before the specific implementation, let's figure out how to calculate lambda.min and lambda.1se. It is worth noting that cross-validated errors are generated with respect to each \(\lambda\).

lambda.min : \(\lambda\) of minimum mean cross-validated error
lambda.1se : largest value of \(\lambda\) such that error is within 1 standard error of the cross-validated errors for lambda.min.

Specifically, lambda.1se is the \(\lambda\) for maximum avg(mcr) from a set of

\[\begin{align} \text{avg}(mcr) &\lt \min(\text{avg}(mcr)) + \text{se}(mcr) \\ \text{se}(mcr) &= \text{stdev}(mcr)/\sqrt{N_{fold}} \end{align}\]
where mcr denotes misclassification error rates by each \(\lambda\) and \(N_{fold}\) is the number of folds. avg(mcr) and se(mcr) are an average and standard error of mcr by each \(\lambda\).



Cross Validation of Lasso without cv.glmnet()


The following R code implements a cross validation procedure for lasso, which has the same functionality of cv.glmnet().


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
#============================================
# cross validation by hand
#============================================
# get a vector of fold id used in cv.glmnet
# to replicate the same result.
foldid <- cvfit$foldid # from glmnet
 
# candidate lambda range
fit  <- glmnet(x, y, family = "binomial")
v.lambda <- fit$lambda
nla      <- length(v.lambda)
    
m.mce <- m.tot <- m.mcr <- 
matrix(0,nrow = nfolds, ncol=nla)  
 
#-------------------------------
# iteration over all folds
#-------------------------------
for (i in 1:nfolds) {
    # training   fold : tr
    # validation fold : va
    
    ifd <- which(foldid==i) # i-th fold
    tr.x <- x[-ifd,]; tr.y <- y[-ifd]
    va.x <- x[ifd,];  va.y <- y[ifd]
    
    # estimation using training fold
    fit <- glmnet(tr.x, tr.y, family = "binomial"
                  lambda = v.lambda)
    # prediction on validation fold
    prd <- predict(fit, newx = va.x, type = "class")
        
    # misclassification error for each lambda
    for(c in 1:nla) {
        # confusion matrix
        cfm <- confusionMatrix(
            as.factor(prd[,c]), as.factor(va.y))
        # misclassification count
        m.mce[i,c] <- cfm$table[1,2]+cfm$table[2,1]
        # total count
        m.tot[i,c] <- sum(cfm$table)
        # misclassification rate
        m.mcr[i,c] <-  m.mce[i,c]/m.tot[i,c]
    }
}
# average misclassification rate (mcr)
v.mcr <- colMeans(m.mcr)
# save manual cross validation output
cv.out <- data.frame(lambda = v.lambda, 
    log_lambda = log(v.lambda), mcr = v.mcr)
    
#-------------------------------
# lambda.min
#-------------------------------
no_lambda_min <- which.min(cv.out$mcr)
cv.out$lambda[no_lambda_min]
 
#-------------------------------
# lambda.1se
#-------------------------------
# standard error of mcr
v.mcr_se <- apply((m.mce)/m.tot,2,sd)/sqrt(nfolds)
# se of mcr(lambda.min)
mcr_se_la_min <- v.mcr_se[no_lambda_min]
# lambda.1se
max(cv.out$lambda[
    cv.out$mcr < min(cv.out$mcr) + mcr_se_la_min])
 
#-------------------------------
# graph for cross validation
#-------------------------------
x11(); matplot(x = cv.out$log_lambda, 
    y=cbind(cv.out$mcr, cv.out$mcr+v.mcr_se,
                        cv.out$mcr-v.mcr_se), 
    lty = "solid", col = c("blue","red","green"),
    type=c("p","l","l"), pch = 16, lwd = 3)
 
cs


We can find that the following results are the same as that of cv.glmnet().


1
2
3
4
5
6
7
8
9
10
> #-------------------------------
> # lambda.min w/o cv.glmnet()
> #-------------------------------
[10.02578548
> 
> #-------------------------------
> # lambda.1se w/o cv.glmnet()
> #-------------------------------
[10.02829953
cs


Cross validation graph is also same as that of cv.glmnet(). In the following figure, points without solid line and two solid lines denote average misclassification rates and upper/lower 1 standard error bounds respectively.

lambda.1se and lambda.min, Cross Validation in Lasso : Binomial Response


Concluding Remarks


From this post, we can 1) implement a cross validation of lasso model, 2) calculate lambda.min and lambda.1se, and 3) generate a cross validation figure. This can be extended to group lasso, exclusive lasso, and so on. Furthermore it can be easily modified to account for the case of a continuous response and time-series data. These additional extended contents will be covered in the next posts. \(\blacksquare\)


No comments:

Post a Comment