Generalized Least Squares (GLS) estimator

This post deals with the generalized least squares (GLS) estimator Since when deriving the Black-Litterman (BL) model, the Theil mixed estimator is used, which is a kind of GLS.

Generalized Least Squares (GLS) estimator
The Southern Ring Nebula, as captured by the James Webb Space Telescope (JWST). NASA, ESA, CSA, AND STSCI

Generalized Least Squares (GLS)



Black-Litterman (BL) model is based on Theil mixed estimator which is a kind of the GLS estimator.

Since BL model combines two regressions (market + views) which have different variance terms respectively, the conbined BL regression model has two different variance terms naturally. Unlike OLS with a constant (homogenous) variance term, when variance terms are not constant (heterogeneous), it is natural to apply the GLS estimator to get estimated parameters.

The starting point is a linear model.


Linear model

\[\begin{align} y &= X \beta + u, \quad u \sim N(0,\Sigma)\\ \\ \text{E}[u|X] &= 0 \\ \text{Var}[u|X] & = \text{E}[u u^{\top}|X] = \Sigma \text{ : determined below} \end{align}\]

OLS estimator


As we are familar, OLS estimator has the following form with a constant variance term across all observations.
\[\begin{align} \Sigma = \sigma^2 I_n \end{align}\] Hance, OLS estimator is of the following formula.
\[\begin{align} \hat{\beta}_{OLS} &= (X^{\top} X)^{-1}X^{\top} y \\ Var(\hat{\beta}_{OLS}) &= (X^{\top} X)^{-1}\sigma^2 \end{align}\]

GLS estimator


Our focus in on the GLS estimator for the linear regression model with non-constant variance terms (\(\Sigma = \sigma^2 \Omega\)) across all observations, which means that residulas are heteroscedastic and/or serially dependent.
\[\begin{align} \Sigma = \sigma^2 \Omega \end{align}\]
GLS estimator is of the following formula.
\[\begin{align} \hat{\beta}_{GLS} &= (X^{\top} \color{red}{\Omega^{-1}} X)^{-1}X^{\top} \color{red}{\Omega^{-1}} y \\ Var(\hat{\beta}_{GLS}) &= (X^{\top} \color{red}{\Omega^{-1}} X)^{-1}\sigma^2 \end{align}\] or \[\begin{align} \hat{\beta}_{GLS} &= (X^{\top} \color{red}{\Sigma^{-1}} X)^{-1}X^{\top} \color{red}{\Sigma^{-1}} y \\ Var(\hat{\beta}_{GLS}) &= (X^{\top} \color{red}{\Sigma^{-1}} X)^{-1} \end{align}\]

Derivation of GLS estimator


When \(\Omega\) is symmetric, using eigen decomposition, \(\Omega\) can be expressed as follows, \[\begin{align} \Omega &= A^{\top} \Lambda A = A^{\top} \Lambda^{1/2} {\Lambda^{1/2}}^{\top} A \\ &= A^{\top} \Lambda^{1/2} (A^{\top} \Lambda^{1/2})^{\top} = PP^{\top} \\\\ \rightarrow P &= A^{\top} \Lambda^{1/2} \end{align}\] Here, \(A\) and \(\Lambda\) are eigenvector and eigenvalue matrix respectively.

Now \(\Omega\) can be transformed into the identity matrix (\(I_n\)) by multiplying \(P^{-1}\) in both sides \[\begin{align} P^{-1} \Omega {P^{\top}}^{-1} = I_n \end{align}\] Multiplying \(P^{-1} \) on both sides of \(y = \beta X + u\) results in

\[\begin{align} P^{-1}y &= P^{-1} X \beta + P^{-1} u\\ \rightarrow y^* &= X^* \beta + u^*\\ \\ \text{E}[u^*|X] &= P^{-1} \text{E}[ u |X]= 0 \\ \text{Var}[u^*|X] & = \text{Var}[P^{-1} u|X] \\ & = P^{-1} \text{Var}[u|X] {P^{\top}}^{-1} \\ & = P^{-1} \sigma^2 \Omega {P^{\top}}^{-1} \\ & = \sigma^2 P^{-1} \Omega {P^{\top}}^{-1} \\ & = \sigma^2 I_n \\ \end{align}\] Therefore, the linear regression model above is rewritten as \[\begin{align} y^* &= X^* \beta + u^*, \quad u^* \sim N(0,\sigma^2 I_n) \end{align}\] Least squares as the minimization problem is implemented as follows. \[\begin{align} &\min_{b} {(y^* -X^* \beta)^{\top}(y^* -X^* \beta)} \\ \rightarrow &\min_{b} {(y -X \beta)^{\top} {P^{-1}}^{\top} P^{-1}(y -X \beta)} \\ \rightarrow &\min_{b} {(y -X \beta)^{\top} \Omega^{-1}(y -X \beta)} \end{align}\] GLS estimator is
\[\begin{align} \hat{\beta}_{GLS} &= ({X^*}^{\top} X^*)^{-1} {X^*}^{\top} y^* \\ &= ({X}^{\top} \Omega^{-1} X)^{-1} X^{\top} \Omega^{-1} y \end{align}\] GLS estimator can be also expressed with the OLS estimator
\[\begin{align} \hat{\beta}_{GLS} &= ({X}^{\top} \Omega^{-1} X)^{-1} X^{\top} \Omega^{-1} y \\ &= ({X}^{\top} \Omega^{-1} X)^{-1} X^{\top} \Omega^{-1} (X\beta + u) \\ &= \beta + ({X}^{\top} \Omega^{-1} X)^{-1} X^{\top} \Omega^{-1} u\\ \end{align}\] Finally the mean and variance of \(\hat{\beta}_{GLS}\) are as follows. \[\begin{align} \text{E}[\hat{\beta}_{GLS}X] &= \beta \\ \text{Var}[\hat{\beta}_{GLS}|X] & = \sigma^2 ({X^*}^{\top}{X^*})^{-1} = \sigma^2 (X^{\top}\Omega^{-1}X)^{-1} \end{align}\]

Concluding Remarks


This post derived the GLS estimator which will be used when deriving the Black-Litterman model. \(\blacksquare\)


No comments:

Post a Comment

Tentative Topics (Keeping Track to Avoid Forgetting)

Segmented Nelson-Siegel model
Shifting Endpoints Nelson-Siegel model
Nadaraya-Watson estimator
Locally weighted scatterplot smoothing (LOWESS)
Time-Varying Parameter Vector Autoregressions (TVP-VAR)
Time-varying or Dynamic Copula
Bayesian VAR
Adrian-Crump-Moench (ACM) term premium model
GARCH-EVT-Copula approach