Theil mixed estimator

This post deals with the Theil mixed estimator which uses the prior information as well as the sample information.

Theil mixed estimator
The Cosmic Cliffs shows the star-forming Carina Nebula in exquisite detail, revealing newborn stars and their dynamic influence on their environment. NASA, ESA, CSA, and STScI


Theil mixed estimator



Theil mixed estimator incorpoate stochastic non-sample information into a linear model. This estimator mixes sample and prior information in a generalized least squares sense. Information regarding GLS estimator can be found at the following previous post.




Linear model with sample information


Sample information is represented by the following linear model.
\[\begin{align} y &= X \beta + u\\ \text{E}(u) &= 0, \quad \text{E}(uu^{\prime}) = \sigma^2 I \end{align}\]

Linear model with sample and prior information


Prior information has the following form \[\begin{align} r & = R \beta + \nu \\ \text{E}(\nu) &= 0, \quad \text{E}(\nu {\nu}^{\prime}) = \Psi \end{align}\] where \(R\) is \(J \times K \) and \(r\) is \(J \times 1\). \(\nu\) is a \(J \times 1\) normally distributed random error vector.

Incorporating the prior information into the sample information leads to the following model specification.
\[\begin{align} \begin{bmatrix} y \\ r \end{bmatrix} = \begin{bmatrix} X \\ R \end{bmatrix} \beta + \begin{bmatrix} u \\ \nu \end{bmatrix} \end{align}\] \[\begin{align} \text{E}(\begin{bmatrix} u \\ \nu \end{bmatrix}\begin{bmatrix} u^{\prime} \color{white}{0} \nu^{\prime} \end{bmatrix} ) = \begin{bmatrix} \sigma^2 I & 0 \\ 0 & \Phi \end{bmatrix} \end{align}\]

GLS estimator


The GLS estimator is as follows.
\[\begin{align} &\begin{bmatrix} X^{\prime} \color{white}{0} R^{\prime} \end{bmatrix} \begin{bmatrix} \sigma^2 I & 0 \\ 0 & \Phi \end{bmatrix}^{-1} \begin{bmatrix} y \\ r \end{bmatrix} \\ = &\begin{bmatrix} X^{\prime} \color{white}{0} R^{\prime} \end{bmatrix} \begin{bmatrix} \sigma^2 I & 0 \\ 0 & \Phi \end{bmatrix}^{-1} \begin{bmatrix} X \\ R \end{bmatrix} \hat{\beta}_{GLS} \end{align}\]
By using matrix multiplications, this result can be simplified to
\[\begin{align} \phi X^{\prime} y + R^{\prime} \Phi^{-1} r = (\phi X^{\prime}X + R^{\prime} \Phi^{-1} R)\hat{\beta}_{GLS} \end{align}\] where \(\phi\) stands for the precision of the regression model : \(\phi = 1/\sigma^2\).

By inverting \(\phi X^{\prime}X + R^{\prime} \Phi^{-1} R\), \(\hat{\beta}_{GLS}\) and its variance can be obtained.

\[\begin{align} \hat{\beta}_{GLS} &= (\phi X^{\prime}X + R^{\prime} \Phi^{-1} R)^{-1} (\phi X^{\prime} y + R^{\prime} \Phi^{-1} r) \\ Var(\hat{\beta}_{GLS}) &= (\phi X^{\prime}X + R^{\prime} \Phi^{-1} R)^{-1} \end{align}\]
This is the Theil mixed estimator.


Theil mixed estimator


More generally, when \(\text{E}(uu^{\prime}) = \Omega \) is used instead of \(\text{E}(uu^{\prime}) = \sigma^2 I\), the Theil mixed estimator can also be represented \[\begin{align} \hat{\beta}_{Theil} &= (X^{\top} \color{red}{\Omega^{-1}} X +R^{\top} \color{blue}{\Phi^{-1}} R)^{-1} (X^{\top} \color{red}{\Omega^{-1}} y +R^{\top} \color{blue}{\Phi^{-1}} r) \\ \\ Var(\hat{\beta}_{Theil}) &= (X^{\top} \color{red}{\Omega^{-1}} X +R^{\top} \color{blue}{\Phi^{-1}} R)^{-1} \end{align}\]

Concluding Remarks


This post derived the Theil mixed estimator which uses the prior information as well as the sample information. This formulation will be used when deriving the Black-Litterman model. \(\blacksquare\)


No comments:

Post a Comment

Tentative Topics (Keeping Track to Avoid Forgetting)

Segmented Nelson-Siegel model
Shifting Endpoints Nelson-Siegel model
Nadaraya-Watson estimator
Locally weighted scatterplot smoothing (LOWESS)
Time-Varying Parameter Vector Autoregressions (TVP-VAR)
Time-varying or Dynamic Copula
Bayesian VAR
Adrian-Crump-Moench (ACM) term premium model
GARCH-EVT-Copula approach