The Cosmic Cliffs shows the star-forming Carina Nebula in exquisite detail, revealing newborn stars and their dynamic influence on their environment. NASA, ESA, CSA, and STScI
Theil mixed estimator
Theil mixed estimator incorpoate stochastic non-sample information into a linear model. This estimator mixes sample and prior information in a generalized least squares sense. Information regarding GLS estimator can be found at the following previous post.
Linear model with sample information
Sample information is represented by the following linear model.
\[\begin{align} y &= X \beta + u\\ \text{E}(u) &= 0, \quad \text{E}(uu^{\prime}) = \sigma^2 I \end{align}\]
Linear model with sample and prior information
Prior information has the following form \[\begin{align} r & = R \beta + \nu \\ \text{E}(\nu) &= 0, \quad \text{E}(\nu {\nu}^{\prime}) = \Psi \end{align}\] where \(R\) is \(J \times K \) and \(r\) is \(J \times 1\). \(\nu\) is a \(J \times 1\) normally distributed random error vector.
Incorporating the prior information into the sample information leads to the following model specification.
\[\begin{align} \begin{bmatrix} y \\ r \end{bmatrix} = \begin{bmatrix} X \\ R \end{bmatrix} \beta + \begin{bmatrix} u \\ \nu \end{bmatrix} \end{align}\] \[\begin{align} \text{E}(\begin{bmatrix} u \\ \nu \end{bmatrix}\begin{bmatrix} u^{\prime} \color{white}{0} \nu^{\prime} \end{bmatrix} ) = \begin{bmatrix} \sigma^2 I & 0 \\ 0 & \Phi \end{bmatrix} \end{align}\]
GLS estimator
The GLS estimator is as follows.
\[\begin{align} &\begin{bmatrix} X^{\prime} \color{white}{0} R^{\prime} \end{bmatrix} \begin{bmatrix} \sigma^2 I & 0 \\ 0 & \Phi \end{bmatrix}^{-1} \begin{bmatrix} y \\ r \end{bmatrix} \\ = &\begin{bmatrix} X^{\prime} \color{white}{0} R^{\prime} \end{bmatrix} \begin{bmatrix} \sigma^2 I & 0 \\ 0 & \Phi \end{bmatrix}^{-1} \begin{bmatrix} X \\ R \end{bmatrix} \hat{\beta}_{GLS} \end{align}\]
By using matrix multiplications, this result can be simplified to
\[\begin{align} \phi X^{\prime} y + R^{\prime} \Phi^{-1} r = (\phi X^{\prime}X + R^{\prime} \Phi^{-1} R)\hat{\beta}_{GLS} \end{align}\] where \(\phi\) stands for the precision of the regression model : \(\phi = 1/\sigma^2\).
By inverting \(\phi X^{\prime}X + R^{\prime} \Phi^{-1} R\), \(\hat{\beta}_{GLS}\) and its variance can be obtained.
\[\begin{align} \hat{\beta}_{GLS} &= (\phi X^{\prime}X + R^{\prime} \Phi^{-1} R)^{-1} (\phi X^{\prime} y + R^{\prime} \Phi^{-1} r) \\ Var(\hat{\beta}_{GLS}) &= (\phi X^{\prime}X + R^{\prime} \Phi^{-1} R)^{-1} \end{align}\]
This is the Theil mixed estimator.
Theil mixed estimator
More generally, when \(\text{E}(uu^{\prime}) = \Omega \) is used instead of \(\text{E}(uu^{\prime}) = \sigma^2 I\), the Theil mixed estimator can also be represented \[\begin{align} \hat{\beta}_{Theil} &= (X^{\top} \color{red}{\Omega^{-1}} X +R^{\top} \color{blue}{\Phi^{-1}} R)^{-1} (X^{\top} \color{red}{\Omega^{-1}} y +R^{\top} \color{blue}{\Phi^{-1}} r) \\ \\ Var(\hat{\beta}_{Theil}) &= (X^{\top} \color{red}{\Omega^{-1}} X +R^{\top} \color{blue}{\Phi^{-1}} R)^{-1} \end{align}\]
Concluding Remarks
This post derived the Theil mixed estimator which uses the prior information as well as the sample information. This formulation will be used when deriving the Black-Litterman model. \(\blacksquare\)
No comments:
Post a Comment